Refinement

Data collection

Refinement on F^2	$\Delta \rho_{\rm max} = 0.617 \ {\rm e} \ {\rm \AA}^{-3}$
R(F) = 0.0382	$\Delta \rho_{\rm min} = -1.162 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.1066$	Extinction correction:
S = 1.046	SHELXL93 (Sheldrick,
1951 reflections	1993)
256 parameters	Extinction coefficient:
All H atoms refined	0.019 (5)
$w = 1/[\sigma^2(F_o^2) + (0.0921P)^2]$	Scattering factors from
+ 0.1003 <i>P</i>]	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)
$(\Delta/\sigma)_{\rm max} = -0.011$	

 $\theta_{max} = 23.5^{\circ}$

 $h = -7 \rightarrow 7$

 $k = 0 \rightarrow 11$

 $l = -11 \rightarrow 11$ 3 standard reflections frequency: 60 min

intensity decay: none

Table 1. Selected geometric parameters (Å, °)

	-	-	
Cu1-01	1.885(2)	O2-C13	1.271 (3)
Cu1—O2	1.932(2)	O3-C11	1.192 (4)
Cul-NI	1.962 (3)	O4-C13	1.223 (4)
Cu1—N2	1.995 (3)	C11—C12	1.506 (4)
Cu1-05	2.523 (3)	C12—C13	1.481 (4)
01—C11	1.286 (4)		
O1-Cu1-O2	92.13 (10)	C11-O1-Cul	124.0(2)
01-Cu1-N1	169.00 (9)	C13-O2-Cu1	124.3 (2)
O2—Cu1—N1	95.78 (9)	03—C11—01	122.1 (3)
01-Cu1-N2	91.51 (10)	O3-C11-C12	119.9 (3)
O2—Cu1—N2	172.70 (9)	01—C11—C12	118.1 (3)
N1-Cu1-N2	79.81 (10)	C13-C12-C11	116.2 (2)
01-Cu1-05	100.46 (11)	O4—C13—O2	124.1 (3)
02-Cu1-05	95.12 (10)	O4—C13—C12	118.3 (3)
N1-Cu1-05	86.45 (10)	O2-C13-C12	117.5 (3)
N2—Cu1—O5	90.44 (10)		

Table 2. Hydrogen-bonding geometry (Å, °)

$D - H \cdot \cdot \cdot A$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$	$H - D \cdot \cdot \cdot A$
O6—H61···O1′	2.13 (4)	2.850 (4)	173 (4)	5 (3)
O6—H62· · ·O3"	2.10(4)	2.737 (4)	169 (4)	8 (3)
O5—H52· · ·O4 [™]	2.12 (5)	2.743 (4)	154 (6)	19 (4)
O5H51····O6''	2.08 (4)	2.811 (4)	170 (4)	7 (3)

Symmetry codes: (i) -x, 1-y, 1-z; (ii) x, y, 1+z; (iii) 1-x, -y, -z; (iv) 1-x, 1-y, 1-z.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989). Cell refinement: *CAD-4 Software*. Data reduction: *NRCVAX* (Gabe, Le Page, Charland, Lee & White, 1989). Program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *ORTEP* (Johnson, 1965).

The authors wish to dedicate this paper to the memory of the late Dr K. Venkatasubramanian, who pioneered the X-ray crystallographic work in this laboratory. We wish to acknowledge Professor P. Natarajan, Director of the Institute, for his encouragement. Lists of structure factors, anisotropic displacement parameters, atomic coordinates and complete geometry have been deposited with the IUCr (Reference: DE1039). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Chen, W., Tioh, N. H., Zou, J. Z., Xu, Z. & You, X. Z. (1996). Acta Cryst. C52, 43–45.
 Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius.
- Delft, The Netherlands.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Hansson, E. (1973). Acta Chem. Scand. 27, 2813-2826.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Karipides, A., Ault, J. & Reed, A. T. (1977). Inorg. Chem. 16, 3299-3302.
- Michaelides, A., Kiritsis, V., Skoulika, S. & Aubry, A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1495–1497.

O'Connor, B. H. & Maslen, E. N. (1966). Acta Cryst. 20, 824-835.

Ray, N. J. & Hathaway, B. J. (1982). Acta Cryst. B38, 770-773.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Udupa, M. R. & Krebs, B. (1980). Inorg. Chim. Acta, 42, 251-254.

Acta Cryst. (1997). C53, 195-197

Luminescent Tris(3-ethyl-1,5-diaza-3-azonia-7-phosphatricyclo[3.3.1.1^{3,7}]decane-*P*)gold(I) Tetraiodide Trihydrate, [(EtTPA)₃Au]I₄.3H₂O

JENNIFER M. FORWARD, RICHARD J. STAPLES,*† C. W. LIU AND JOHN P. FACKLER JR

Department of Chemistry, Laboratory for Molecular Structure and Bonding, Texas A&M University, College Station, Texas 77843, USA. E-mail: staples@chemistry. harvard.edu

(Received 3 May 1995; accepted 8 October 1996)

Abstract

The title complex, $[Au(C_8H_{17}N_3P)_3]I_4.3H_2O$, has the complex cation lying with its Au and associated I atom on a crystallographic threefold axis. The AuP₃ moiety has distorted trigonal-planar geometry [the Au atom is 0.336 (3) Å from the P₃ plane], with Au—P 2.334 (3), Au···I 2.9129 (12) Å and P—Au—P 117.97 (3)°. The asymmetric unit also has one iodide ion and one water molecule in general positions, with O···I distances [3.516 (2) and 3.576 (2) Å] consistent with O—H···I hydrogen bonding.

† Present address: Harvard Department of Chemistry, 12 Oxford Street-237, Cambridge, MA 02138, USA.

Comment

We have been studying the coordination of the 1,3,5triaza-7-phosphaadamantane (TPA) ligand, to a gold(I)center to form the complexes AuLX, AuL₂X, AuL₃X and Au L_4X (where L = TPA; X = Cl, Br, I) (Assefa *et al.*, 1995). This ligand is of interest due to its small cone angle (102°; Darensburg & Daigle, 1975), which is similar to PMe₃, and its ability to form complexes that are both soluble and stable in aqueous solution. The threecoordinate complex, AuL_3X , is of special interest due to the observation that complexes containing gold(I) in a trigonal-planar arrangement can show luminescence both in the solid state and in solution (King, Khan, Staples & Fackler, 1992). The [(TPA)₃Au]⁺ species has not been structurally characterized, but the title complex, $[(EtTPA)_3Au]_{4.3H_2O}$, (3), containing the ethyl derivative of TPA as [EtTPA]I, (2), readily forms single crystals.

The title structure consists of a gold(I) center coordinated to three EtTPA ligands in a distorted trigonalplanar arrangement (Fig. 1). The Au atom lies on the threefold axis. The Au—P bond length is 2.334 (3) Å, which is in the range found for complexes of this type (2.325-2.361 Å; Fackler, Staples & Assefa, 1994). The Au atom lies out of the P₃ plane by 0.336 (3) Å. One iodide ion is weakly coordinated to the gold(I) center on the threefold axis perpendicular to the P₃ plane at a distance of 2.9129 (12) Å. This distance is significantly longer than the 2.5-2.6 Å range usually observed for Au—I bond lengths (Bowmaker *et al.*, 1987). The structure is similar to that found for the methylated derivative [(MeTPA)₃Au]I₄ (Forward, Staples & Fackler, 1995).

The water molecule in the asymmetric unit is separated from the I2 ions by distances of 3.516(2)and 3.576(2) Å (to the I2 atom at equivalent position $\frac{2}{3} - x + y$, $\frac{1}{3} - y$, $\frac{1}{3} + z$). We were unable to locate the H atoms of the water molecule, but these separations are consistent with the presence of O—H…I hydrogen bonding. This type of hydrogen bonding has been observed previously in the literature and the O…I distance is similar to those found previously (3.2–3.8 Å; for example, see Fujiwara, Iwamoto & Yamamoto, 1984).

Fig. 1. A displacement ellipsoid plot (50% probability) of the [(EtTPA)₃Aul]³⁺ moiety. The remaining iodide ions and water molecules are not shown for clarity.

Experimental

The [EtTPA]I ligand was synthesized in 92% yield according to an analogous procedure to that outlined for the synthesis of [MeTPA]I (Daigle & Pepperman, 1975). [Au(Me₂S)Cl] (0.1 g, 3.40×10^{-4} mol) was stirred for 2 h with three equivalents of [EtTPA]I (0.319 g, 1.02×10^{-3} mol) in a CH₂Cl₂-H₂O solvent mixture (5 ml/5 ml). After the reaction was complete, the solvent was removed under reduced pressure and the white residue recrystallized from methanol. Single crystals were grown from a water solution of the product. The complex is luminescent in the solid state at 77 K. Excitation at 340 nm gives a yellow emission centered at 533 nm.

Crystal data

$[Au(C_8H_{17}N_3P)_3]I_4.3H_2O$	Mo $K\alpha$ radiation
$M_r = 1313.23$	$\lambda = 0.71073 \text{ Å}$
Trigonal	Cell parameters from 20
R3c	reflections
a = 21.421(2) Å	$\theta = 6.5 - 8.5^{\circ}$
c = 15.063 (2) Å	$\mu = 6.940 \text{ mm}^{-1}$
$V = 5985.5 (9) \text{ Å}^3$	T = 293 (2) K
Z = 6	Plate
$D_x = 2.186 \text{ Mg m}^{-3}$	$0.3 \times 0.3 \times 0.1 \text{ mm}$
D_m not measured	Colorless
Data collection	
Enraf–Nonius CAD-4	956 reflections with
diffractometer	$l > 2\sigma(l)$
$\omega/2\theta$ scans	$R_{\rm int} = 0.0508$
Absorption correction:	$\theta_{\rm max} = 23.96^{\circ}$
ψ scans (North, Phillips	$h = -24 \rightarrow 0$
& Mathews, 1968)	$k = 0 \rightarrow 24$
$T_{\rm min} = 0.234, T_{\rm max} = 0.500$	$l = 0 \rightarrow 17$
2116 measured reflections	3 standard reflections
1085 independent reflections	every 120 reflections
-	intensity decay: none

Refinement Refinement on F^2 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 1.006 \text{ e } \text{\AA}^{-3}$ R(F) = 0.0245 $wR(F^2) = 0.0565$ $\Delta \rho_{\rm min} = -0.511 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.086Extinction correction: none 1085 reflections Scattering factors from 133 parameters International Tables for H atoms riding Crystallography (Vol. C) $w = 1/[\sigma^2(F_o^2) + (0.0253P)^2$ Absolute configuration: Flack (1983) + 14.2616P] where $P = (F_o^2 + 2F_c^2)/3$ Flack parameter = 0.016(10)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{eq} =$	$(1/3)\sum_i\sum_j U^{ij}a_i^*a$	$ia_i.a_j$
------------	----------------------------------	------------

	x	у	z	U_{eq}
Aul	0	0	0.00000 (3)	0.0405 (2)
11	0	0	0.19338 (7)	0.0546 (4)
12	0.20575 (5)	-0.01867 (5)	0.29369 (8)	0.0644 (3)
P1	-0.00432 (15)	0.10561 (14)	-0.0223 (2)	0.0388 (6)
N1	-0.0748 (7)	0.1819 (7)	0.0010 (8)	0.070 (3)
N2	0.0562 (6)	0.2524 (5)	-0.0183 (7)	0.051 (2)
N3	-0.0221 (5)	0.1919 (5)	-0.1461 (6)	0.042 (2)
Cl	0.0721 (8)	0.1955 (6)	0.0049 (8)	0.057 (3)
C2	-0.0757 (8)	0.1153 (8)	0.0286 (8)	0.063 (4)
C3	-0.0164 (6)	0.1244 (5)	-0.1376 (7)	0.043 (3)
C4	-0.0087(11)	0.2445 (9)	0.0285 (10)	0.076 (4)
C5	0.0470 (7)	0.2573 (7)	-0.1116 (8)	0.050 (3)
C6	-0.0850(7)	0.1848 (7)	-0.0909 (9)	0.058 (3)
C7	-0.0357 (8)	0.2038 (8)	-0.2389 (8)	0.064 (4)
C8	0.0159 (13)	0.2102 (11)	-0.3047 (12)	0.108 (7)
01	0.2787 (8)	0.0154 (8)	0.5091 (10)	0.120 (5)

Table 2. Selected geometric parameters (Å, °)

Au1—P1	2.334 (3)	N2C5	1.43 (2)
Aul···[]	2.9129 (12)	N2C1	1.46 (2)
PIC2	1.813 (14)	N2C4	1.49 (2)
PI-C3	1.831 (10)	N3C7	1.477 (15)
PICI	1.845 (12)	N3C3	1.514 (13)
N1C6	1.41 (2)	N3C6	1.525 (14)
N1C4	1.44 (2)	N3C5	1.53 (2)
N1—C2	1.48 (2)	C7C8	1.44 (3)
PI'—Au1—PI	117.97 (3)	C3-P1-C1	97.5 (5)
PI—Aul···II	98.27 (7)	C2—P1—Au1	119.6 (4)
C2-PI-C3	99.0 (5)	C3—P1—Au1	115.4 (3)
C2-P1-C1	98.4 (6)	C1-P1-Au1	122.3 (5)

Symmetry code: (i) -y, x - y, z.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD-4 Software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Siemens, 1990). Software used to prepare material for publication: SHELXL93.

Support from the National Science Foundation (CHE 9300107) and the Robert A. Welch Foundation is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1092). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Assefa, Z., McBurnett, B. G., Staples, R. J., Fackler, J. P. Jr, Assman, B., Angermaier, K. & Schmidbaur, H. (1995). *Inorg. Chem.* 35, 75-83.
- Bowmaker, G. A., Dyson, J. C., Healy, P. C., Englehardt, L. M., Pawatchai, C. & White, A. H. (1987). J. Chem. Soc. Dalton Trans. pp. 1089-1097.
- Daigle, D. J. & Pepperman, A. B. Jr (1975). J. Heterocycl. Chem. 12, 579-580.
- Darensburg, M. Y. & Daigle, D. (1975). Inorg. Chem. 14, 1217–1222. Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fackler, J. P. Jr, Staples, R. J. & Assefa, Z. (1994). J. Chem. Soc. Chem. Commun. pp. 431-432.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Forward, J. M., Staples, R. J. & Fackler, J. P. Jr (1995). Organometallics, 14, 4194–4198.
- Fujiwara, T., Iwamoto, E. & Yamamoto, Y. (1984). Inorg. Chem. 23, 115-117.
- King, C., Khan, M. N. I., Staples, R. J. & Fackler, J. P. Jr (1992). Inorg. Chem. 31, 3236–3238.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1990). SHELXTL/PC. Complete Software Package for Single Crystal Structure Determination. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 197-200

μ -Chloro-1:2 κ^2 Cl-trichloro-2 κ^3 Cl-(2,4-dimethyl-5,8-diazadec-4-ene-2,10-diamine- $1\kappa^4 N, N', N'', N'''$)copper(II)zinc(II)

Olga P. Gladkikh,^{*a*} Neil F. Curtis^{*a*} and Sarah L. Heath^{*b*}

^aDepartment of Chemistry, Victoria University of Wellington, Box 600, Wellington, New Zealand, and ^bDepartment of Chemistry, University of Newcastle, Newcastle upon Tyne NE1 7RU, England. E-mail: neil.curtis@vuw.ac.nz

(Received 9 July 1996; accepted 21 October 1996)

Abstract

The title compound, $[Cu(C_{10}H_{24}N_4)(\mu-Cl)ZnCl_3]$, is formed by the reaction of equimolar amounts of 3-azapentane-1,5-diamine, copper(II) chloride and zinc(II) chloride with excess 4-amino-4-methylpentan-2-one in methanol. The copper(II) ion is in a square-pyramidal coordination, with the tetradentate triamine mono-imine ligand in the basal plane (the mean Cu—N distance is 2.005 Å) and a Cl atom of a tetrachlorozincate ion axially coordinated, with a Cu—Cl distance of 2.6630 (7), a Cl—Zn distance of 2.3107 (7) Å and a Cu—Cl—Zn angle of 113.14 (2)°. The chloro-bridged